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I. Introduction    

The general belief about the collective fields is that they don’t affect the closed orbit of the 
beam. The comparison of the induced fields with the driving magnetic field gives many 
orders of magnitude difference in favor of magnets. Therefore in the stability analysis the 
closed orbit is assumed to be equal to zero (usually zero coincides with the symmetry axis of 
the vacuum chamber). Then the eigenfrequencies of all the collective modes of oscillation 
are searched for near the betatron sidebands of the revolution harmonics. It is shown in this 
paper that if the transverse impedance is large near zero frequency, although it equals zero at 
zero frequency, there exists a strong accumulation of the fields at the beam orbit, which 
leads to an enormous amplification of the closed orbit distortion during and after injection, 
typically within a few thousand turns.  The first estimation shows that the effect could be 
very important for high intensity proton rings, e.g. the SNS ring at the full intensity of 2*1014 
protons. 

II. Basic Physics 

We consider only long memory multiturn effects.  Therefore the beam can be represented as 
one macroparticle, if we are not interested in the spread of the betatron frequencies, orbit 
dispersion, etc. The fields left after the beam passage can be written as a sum from previous 
turns of the beam transverse coordinate with the wake function. The equation for vertical 
(or horizontal) motion for this macroparticle is (see, e.g. 1): 
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where N is the number of particles, r0 is the particle’s classical radius, W is the wake 
function, responsible for the collective field accumulation, C is the storage ring 
circumference, ωb is the betatron frequency and the rest of the constants correspond to the 
standard physical notations. Let’s take a constant wake function and find the solutions to 
equation (1). Now it reads: 
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with χ=-Nr0Wc2/Сγ, and k0 equal to the number of turns after injection. The equation has 
three (!) eigenfrequencies. If we assume that the collective field tuneshift is small compared 
to the betatron frequency, these three frequencies are (we assume exp(-iωt) dependence on 
time): ω1=ωb-exp( i2πνb)χ/2ωb(1-exp(i2πνb)), ω2=c.c.ω1, ω3=+ iχω0/2πωb

2. The first two 
values are just well known solutions around betatron frequency, being stable since χ is 
usually positive. The last eignefrequency is close to zero, which shows that the centroid 
position of the beam starts to drift from the center exponentially (again for the case of the 
positive χ). Since this eigenfrequency appears near closed orbit zero frequency and the 
centroid doesn’t execute betatron oscillations, we call it instability of the closed orbit.  

     A strange feature of the increment of this instability is that it is inversely proportional to 
the square (!) of the betatron frequency and doesn’t depend on the fractional part of the 
betatron tune (the first two solutions do depend on the fractional betatron tune). But this is 
valid only when the wake function is uniformly distributed around the ring. The remarkable 
feature of this instability is that it strongly depends on how the wake is localized in the ring. 
Let’s take another extreme case when the wake is localized at one point (its length is much 
less than the beta function at this point). The equation (2) should be replaced with the 
difference equation (let’s write it in normalized variables and assume the transverse angle 
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where κ =-Nr0W/γ, β is the beta function at the point of the wake, s stands for the  sum of 
coordinates at this point. The matrix eigenvalues are: 

 λ1,2=exp(±i2πνb)±iκβ/2(1-exp(±i2πνb)),    

λ3=+ 1+κβcos(πνb)/2 sin(πνb),                            (4) 

the increment δ= +κβcos(πνb)/2 sin(πνb). 

Now the third eigenvalue, which corresponds to the instability of the closed orbit, depends 
on the beta function at the wake point, and on the fractional part of the betatron tune 
(contrary to the distributed wake above), and the instability happens above integer (for 
positive fractional tune) when the betatron oscillations are stable. This opposite case shows 
unique properties of the instability – its increments (decrements) strongly depend on the 
impedance distributions over the ring unlike the conventional betatron instabilities, which (if 
far from integer and half integer resonances) depend only on integral values of the 
impedance.   

II. Practical cases – resistive wall and “surrounded” resistive wall wakes. 
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      In this section we present two practical cases – the resistive wall case for the thick 
vacuum chamber and the thin vacuum chamber surrounded by magnets. For the first case 
the wake function is equal to: 
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where we take conductivity σ in CGS system (in our case, σ=1.31016s-1 for the stainless 
steel), C again is the circumference, the length units should be taken in the same system as 
beta-function and the particle classical radius.  This wake function is valid only when the 
fields don’t penetrate the vacuum chamber. But in our situation we are hunting for the low 
frequency (1 kHz) effects, and the skin depth for the stainless steel is already big (about 6 
mm) compared to thickness of the most vacuum chambers (usually, their thickness of the 
order of 1 mm). Therefore we should take into account pieces, which surround the vacuum 
pipe. Figure 1 shows a simplified scheme of the magnet frame (on the left) with the chamber 
inside. This geometry is not suitable for analytic calculations. For the estimation it can be 
replaced by the azimuthally symmetric geometry (on the right), with the round vacuum 
chamber surrounded by a round piece of metal with very high permeability (of the order of 
1000). As is shown in Ref.2, when the outer layer has much higher surface impedance (restive 
wall impedance of the surrounding metal is approximately µ higher), then the whole image 
current flows through the chamber, and its transverse impedance can be estimated (from 

Panofsky-Wenzel formula) as R
b
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ω =⊥ , where R is just the resistance of the layer. 

The wake function can be obtained by taking the Fourier transform of this expression: 
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In order to match the units with (1), the resistance R should be taken in CGS units, namely  
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Figure 1 Simplified vacuum chamber model. 

equal to R=L/(2πb d σ), with  σ=1.31016s-1 for stainless steel.         

 

        

ESTIMATION FOR THE SNS RING 

Consider the injection kickers, which have ceramic chambers coated with TiN. For 
estimation we use the following numbers: σ=2.21016s-1, L=5m (the total length), d=9 10-6 m 
(the thickness), b=0.08 m, N=2*1014 (total number of protons), β = 7m (average beta 
function at the kicker position), fractional betatron tune νb =0.2. W=-2cL/(2πb3 d σ). The 
instability decrement is taken from equation (4).                          We have the increment 
δ=(Nr0βcL cos(πνb))/(πb3 d σ 2 sin(πνb))=4.2*10-3, or the growth rate 1/δ =236 turns. 
Therefore the initial distortion could be multiplied by order of e4 during the 1000 turns 
injection. Therefore the low frequency impedance should be reduced by order of magnitude. 

     Distributed resistive wall effects are smaller, but the localized resistive wall due to the 
collimators gives almost the same integrated wake as the rest of the ring. An estimation of 
this effect alone gives about 12% growth of the closed orbit during 1000 turns. The strange 
thing about the resistive wake is that the increment of the instability depends on the squared 
current (one more strange property of the instability). The solution for the resistive wall 
wake (uniformly distributed and localized), and the more general situation of several 
localized impedances in the ring is given in the Appendix. 
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WHY TRANSITION 

     All the effects described work only when the fields live inside the vacuum chamber. The 
wake fields totally change after the fields penetrate through the vacuum chamber. Normally 
it happens after few thousand turns, which correspond to the frequencies below 1 kHz. 
Moreover, since the transverse impedance goes to zero at zero frequency, the total integral 
of the wake function is equal to zero, therefore the stationary orbit produces no integral 
effect – the effect is essentially transient, which is, probably, not important for the short 
pulse accumulators.  

  But, obviously, when the intensity is large and the rise time is shorter than the penetration 
time, only the wake at times shorter than the instability rise time matters and the instability 
will last until the beam is lost. 

CONCLUSION and RECCOMMENDATIONS 

 The instability presented here reveals many new features, such as the strange dependence 
on the wake distributions over the ring, dependence on the inverse squared frequency in 
the distributed case, and opposite behavior to the conventional resistive wall behavior in 
the localized case. There is no chromaticity effect on the instability, since it is not 
coupled to the betatron oscillation. Therefore it is hard to provide usual damping 
mechanisms for it. If the low frequency (1kHz – 1MHz) integral impedance is large, it 
will present a big danger for storage ring operation.  

   The impedance of interest should be better understood and reduced if necessary (as it 
was shown, about a factor ten of reduction is needed in the case of thin coatings for the 
SNS injection kicker). The vacuum chamber elements should be measured for low 
frequency. Some cures (dynamic orbit correction, etc.) should be developed. 

 

                                                 

1 A. Chao, “Physics of collective beam instabilities in high energy accelerators”, John Wiley & Sons, Inc. (1993) 
p 172. 

2 V. Danilov, et al. “ESTIMATION FOR THE SNS RING INJECTION MAGNETS COATING 
IMPEDANCE”, SNS Tech Memo, August 2001 

APPENDIX 
The uniformly distributed resistive wake (5) produces the equation of the following kind: 
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where η=-Nr02 √(c/σ) c2/πb3γ.   If the instability is week, we look for the y solution in the 
form y0exp(δ n), where n is number of turns, δis the increment per turn. The sum in the 
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R.H.S. of  (1 a) could be calculated using approximate formula 
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For the SNS parameters (c=250m, b=0.01 m, νb=6, N=2*1014) it is equal about 1.8*10-8, 
which is negligible. But the situation change when the wake is localized. In this case the 
approach of equation (4) doesn’t work, but some analysis still possible. We analyze only the 
closed orbit. If we have a constant (or almost constant) angle kick at some point, the 

coordinate value at this point is: 
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the increment per turn is 
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which gives for SNS collimators (b=0.025 m, Lwake=10m, β=7m, νb≈0.1 with taking into 
account space charge tuneshift, with stainless steel conductivity σ=1.31016s-1) increment 
δ=1.17*10-4. This gives a sizable effect of 12% orbit growth after 1000 turns, and doubles 
the orbit deviation after 6000 turns (if the wake function still has the same form at such big 
times). Of course there are many nonuniformities in the ring. Now we consider the case 
when we have two localized constant wakes in order to understand the behavior of 
instability for nonuniformly distributed wakes. 

     If we consider two locations with impedances, the conventional instability’s increment 
changes according to the bulk value of the impedance at the unstable frequency. One might 
expect similar behavior for the closed orbit instability. But the situation is essentially 
different! Addition of one more wake increments the number of modes by one! The new 
modes could be stable or unstable depending on the phase advance between impedances. 
Consider two localized constant wakes. Following the previous calculations, we find the 
orbit deviations at points 1,2 of the localized wakes positions: 
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One can see that the sign of the increment depends on the phase advance between two 
points, betatron tune, beta function and wake strengths. In the general case, there exist stable 
and unstable harmonics, which should be determined from the integral equation of this type:  
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where W(s) denotes constant wake function per unit length and λ is the eigenvalue to be 
found. In general, this equation has an infinite number of roots – there should be positive 
and negative eigenvalues, which correspond to the stable and unstable harmonics. 


